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ABSTRACT: 

 

Knowledge on soil depth is important to evaluate the potential and appropriate utilization of the soil 

for crop growing because the depth of a soil and its capacity for water and nutrients often determine 

the crop yield. But especially soil depth data retrieval with reasonable spatial resolution is work-

intensive and time-consuming. Therefore, an approach to predict soil depth at plot level is 

presented. This approach is based on spectral information of soil inherent characteristics and canopy 

water content. The relationship of soils developed on carbonatic bedrock material between inorganic 

carbon concentrations and soil depth was utilized to estimate soil depths with reliable accuracy. 

Since soil depth is known to have substantial influence on water available for plant communities an 

index sensitive to canopy water content was introduced into the regression model. A multivariate 

regression based on both water index and inorganic carbon enhanced soil depths prediction accuracy 

substantially. This methodology has been successfully applied to an agricultural plot in Rhineland-

Palatinate (Germany). Results confirm that the approach is predicting very similar depths to those 

observed in the field descriptions. The use of this combined approach will facilitate the 

implementation of digital soil mapping. 
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1. INTRODUCTION 

 

Knowledge on soil depth is important to evalu-

ate the potentials for plant growth and to allow 

for an appropriate soil management. Existing 

barriers in the soil may hinder roots to extend 

and crops will often suffer from water shortage 

and limited nutrient availability. Deep soils are 

able to hold more water and plant nutrients 

than shallow soils with similar textures. 

Soil depth estimation is commonly carried out 

coring or digging pits. But necessary efforts for 

coring are relatively high. Especially soil depth 

data retrieval with reasonable spatial resolution 

is work-intensive and time-consuming. There-

fore, when spatial information on soil depth is 

required, new techniques need to be developed 

and implemented. 

Laboratory reflectance spectrometry is accep-

ted as a fast and non-destructive tool to assess 

soil properties (e.g. Couillard et al. 1997, 

Chang et al. 2001; Shepard & Walsh 2002). 

Varying combinations of mineral components, 

soil organic matter and the soil moisture affect 

the reflectance of soils by inherent spectral 

characteristics (Baumgardner et al. 1985). 



 

Thereby carbonate content is one of the major 

driving forces in soil reflectance since soil 

brightness is substantially influenced by the 

relative amount of carbonate in soils. Hence, 

several authors established statistical models 

between soil reflectance and carbonate content 

(e.g. Ben-Dor and Banin, 1990, 1995; 

Udelhoven et al. 2003; Jarmer et al. 2009). 

Since optical remote sensing is limited to soil 

surface, an assessment of soil depth is only 

feasible based on indicators which are related 

to soil depth and predictable from remote 

sensing data. For soils developed on carbonate 

bedrocks the inorganic carbon content (Cinorg) 

is such an indicator; during soil development 

Cinorg of the soil is reduced by weathering. 

Well developed soils in this case tend to lower 

Cinorg while shallow soils incline to higher 

concentrations due to their nearness to the 

carbonate bedrock. 

Further on, the growing vegetation canopy can 

give important hints on soil depth. As soil 

depth is related to the soils’ capacity for water 

supply, canopy water content may change with 

varying soil depth. The canopy water content 

can be determined by empirical approaches 

which generate a statistical relationship 

between spectral indices derived from spectral 

measurement and water content (e.g. Peñuelas 

et al. 1997; Gao 1996). 

Generally a data set in soil mapping is limited 

to only a few locations. Although laboratory 

and field spectroscopy allows increasing the 

number of sampled locations substantially, the 

spatial assessment exclusively based on terres-

trial inquiry for broader areas is rarely feasible. 

High spatial and spectral resolution of airborne 

hyperspectral sensors may provide more 

detailed pattern recognition of the soil’s and 

vegetation’s heterogeneity and are in particular 

suitable for monitoring required parameters 

(e.g., Selige et al. 2006; Vohland 2008). 

Consequently, this case study focuses on prac-

tical implication of reflectance spectrometry 

for the assessment of Cinorg and soil depth of an 

agricultural soil. Specific aims were to develop 

a two-step empirical approach for predicting 

Cinorg from reflectance measurements. In a first 

step Cinorg was estimated from soil reflectance 

spectra while in the second step soil depth was 

linked to the soil Cinorg. Subsequently, the 

potential of integrating hyperspectral imaging 

spectrometer data into the model approach was 

investigated. Finally, the obtained regression 

model was implemented to predict soil depth 

for the entire plot from values of interpolated 

Cinorg and HyMap-derived vegetation index. 

 

 

2. DATA AND METHODS 

 

The study site is located in the Trier region, 

Rhineland-Palatinate, Germany. A plot of 

approximately five hectares in size was 

investigated which was cropped with summer 

barley during growing season. Soil types are 

eutric cambisols and haplic to mollic 

stagnosols with sitly texture derived from loess 

over limestone. In the area the long-term mean 

annual precipitation is around 750 mm y
–1

. 

Field survey and soil sampling were performed 

during dry weather conditions in March 2005 

before the crop season. A sampling raster of 

30 × 30 m was realized for investigation to 

consider spatial variability of soil properties 

(n = 52). Differential GPS was employed to 

locate exact sampling position. An integrative 

sample was taken from the upper 5 cm of the 

soil profile for each position representing an 

area of about 1 m². At every second sampling 

position a Pürckhauer probe was conducted to 

assess soil-profile data (n = 29). 

The soil samples were air-dried in the 

laboratory, gently crushed in order to pass a 2 

mm-sieve and carefully homogenized. The 

total amount of inorganic carbon (Cinorg) was 

analysed by elemental analyser (Elementar 

Analysensysteme GmbH). 

Bi-directional reflectance measurements of the 

homogenized soil samples were acquired in 

the laboratory with an ASD FieldSpec-II 

spectroradiometer in the wavelength range 

350 – 2500 nm using a reflectance standard of 

known reflectivity (Spectralon). The optical 

head of the spectroradiometer was mounted on 

a tripod in nadir position with 10 cm distance 

to the sample. A 1000 W quartz-halogen lamp 

set in a distance of approx. 30 cm and an 



 

illumination angle of 30 degrees was used to 

illuminate reference panel and samples. 

Multiplying the raw reflectance spectra by the 

certified reflectivity of the Spectralon panel 

absolute bi-directional reflectance spectra were 

obtained. For further analysis spectra were 

resampled to HyMAP spectra resolution. 

The hyperspectral image data were acquired by 

a HyMap airborne imaging sensor on May 28, 

2005 between 11.00 h and 11.30 h local time. 

The sensor recorded spectra in the wavelength 

range from 420 to 2480 nm in 126 spectral 

bands with a ground resolution at nadir of 

approximately 5 m. Image pre-processing was 

performed including across-track illumination 

correction and both atmospheric and geometric 

correction steps. For the latter, ENVI’s 

atmospheric correction module FLAASH and 

the PARGE™ software (Schläpfer & Richter, 

2002) were used. 

Estimation of Cinorg of the investigated soil 

samples was performed by Partial least-squares 

regression (PLS). PLSR results were cross-

validated (cv) according to the ‘leave-one-out-

method’. The coefficient of determination (r²) 

and the root mean squared error (RMSE) were 

calculated to assess the prediction accuracy. In 

addition, the RPD was determined by dividing 

the standard deviation of the measured values 

by the RMSE (Malley et al., 2004). 

A linear regression model was performed to 

predict soil depth based on Cinorg estimates. In 

a multiple regression analysis, an index related 

to vegetation was integrated as additional 

predictor variable. For the adequacy of the 

implemented regression model the residuals 

were tested for normal distribution and 

exclusion of auto-correlation. 

To benefit from most likely significant influ-

ence of soil depth on plant growth and canopy 

water content, a spectral vegetation index was 

applied. Here, results from former local studies 

(Sonnenschein et al., 2006; Vohland, 2008) 

suggest applying the water index (WI), 

originally introduced by Peñuelas et al. (1997). 

For WI calculation from the HyMap data, a 

modification of the original WI formula was 

necessary selecting those HyMap channels 

closest to the original WI wavelengths: 
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GPS coordinates measured in the field were 

applied to assign one WIHyMap value to each 

sampling position. A 3x3 window of pixels 

centred on the coordinates of each field sample 

location was considered to compensate for 

inevitable position errors enclosed in image 

geocoding and GPS measurements, and from 

the nine WI values the median was extracted. 

 

 

3. RESULTS AND DISCUSSION 

 

Cinorg of samples varied between 2.53 g kg
-1

 as 

minimum and more than 64 g kg
-1

 as 

maximum. Soil depths measured in the field 

ranged from 19 cm indicating a very shallow 

soil to more than 90 cm representing a deep 

soil. Only one soil showed a profile depth less 

than 30 cm, at eleven sampling positions 

depths were estimated to be between 30 and 

60 cm while almost sixty percent of the 

investigated soils (n = 17) were characterized 

by depths of more than 60 cm. Based on these 

measured data, a negative correlation of 0.86 

can be found between soil depth and Cinorg. 

Soil samples’ Cinorg have been predicted by 

PLS regression. Since two samples were found 

to be outliers they were excluded from further 

analysis. One with the highest Cinorg of about 

64.1 g kg
-1

 which is almost 10 g kg
-1

 above the 

sample with the next highest concentration, for 

the other excluded soil sample Cinorg slightly 

above zero was measured in laboratory. To 

allow a reliable estimation of Cinorg in soil 

samples at least a concentration of 3 g kg
-1

 was 

required. The result of the PLS prediction for 

the remaining 50 samples with an r²cv of 0.957 

(RMSEcv = 2.689; RPD = 5.58; eight latent 

variables) was very high and proves that 

estimation of Cinorg from reflectance data at 

HyMap spectral resolution to be absolutely 

reliable (Figure 1). 

In the next step, the potential of predicting soil 

depth from Cinorg estimates was explored. 

Here, the soil sample with the extremely high 

Cinorg concentration of 6.41 percent was again 



 

excluded. Based on the remaining samples, a 

linear regression model was found for the 

prediction of soil depth from Cinorg estimates. 

The predictions prove to be reliable (r²cv = 

0.687, RMSEcv = 10.88, RPD = 1.755), and 

the linear fit between estimates and measured 

values is close to the 1:1-line with an offset 

less than 2 cm. For more than two thirds of the 

samples the prediction error of soil depth is 

less than ten centimeters, and only for one 

sample that represents a shallow soil with a 

profile depth of 34 cm, soil depth is 

overestimated by more than 20 cm (20.9 cm). 

Considering a link between soil depth and soil 

water holding capacity on the one hand, and 

water supply and plant water content on the 

other hand, the WI, as a measure for canopy 

water content, was explored as another 

predictor variable for soil depth. WI values, 

calculated from the HyMap data, vary between 

1.1206 in the minimum and 1.2735 in the 

maximum with a mean of 1.2295 (standard 

deviation: 0.03). Lowest WI values are found 

at the south-eastern fringe and in the central 

part of the plot, whereas highest WIs – 

indicating high water contents – are widely 

spread over the plot with one well-pronounced 

accumulation in the south-western part of the 

field. WI values were extracted from the image 

data for those positions where soil depths had 

been measured; here, a positive correlation of 

0.714 was found. 

Based on this finding, WI was integrated as 

second predictor variable - in addition to Cinorg 

- in a linear multiple regression model for the 

prediction of soil depth: 
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Compared to the regression model using solely 

Cinorg as predictor, the multiple regression 

allows a clearly more reliable assessment of 

soil depth (r² = 0.826, RMSEcv = 7.927, RPD = 

2.407). The linear fit between estimates and 

measurements is again close to the 1:1-line 

with an offset less than 1 cm (Figure 2). 

Prediction errors are only for two samples 

beyond 15 cm (16.8 cm and 16.7 cm for two 

samples with measured depths of 36 cm and 

41 cm respectively); another five samples are 

over-/underestimated by 10 to 13 cm, while 

more than seventy-five percent of the samples 

exhibit prediction errors below an absolute 

value of 10 cm. 

The final goal of this study was the 

implementation of the obtained regression 

model to predict soil depth in the spatial 

 

Figure 1. Scatterplot of PLS regression results 

(cross-validated) for Cinorg . 
 

 

 

Figure 2. Scatterplot of multiple regression 

model estimates for soil depth. 



 

domain. However, spatial soil depth estimates 

for the entire plot required an additional 

modeling step. While WI was calculated from 

HyMap data at 5 m resolution, Cinorg was pre-

dicted according to 30 x 30 m sampling raster. 

Hence, estimated Cinorg were interpolated with 

5 m resolution from point data to match 

resolution of HyMap-derived WI. Interpolation 

results were compared for both measured and 

predicted values of Cinorg to prove the 

prediction power beyond point data. The 

pattern produced by estimated Cinorg from PLS 

coincides with the pattern resulting from the 

measurements of the laboratory chemical ana-

lysis. Hence, comparing interpolation results 

clearly reveals, that PLS predictions allowed 

an excellent reproduction of Cinorg spatial 

pattern. Consequently, the interpolated Cinorg 

predictions and the WI were used to estimate 

soil depths at 5 m resolution. The result is 

illustrated in Figure 3. 

Deep soils (> 70 cm) primarily occur in the 

western and eastern part of the field with the 

deepest on the eastern edge where a brook 

limits the field. Shallow soils (< 40 cm) were 

largely predicted for the central part (figure 3). 

This spatial heterogeneity is mainly attributed 

to topography since the central part of the plot 

is characterized by a slight rim with gentle 

slopes to the west and east. 

The range of predicted depths predicted by 

multiple regression at 5 m resolution was quite 

close to depth estimates during field survey 

(Table 1). While the mean and maximum 

depth are quite similar, the minimum depth 

differs by more than 10 cm. In the field a very 

shallow soil (19 cm) was sampled which is 

limited to a very small area. This local “spot” 

was not detectable at HyMap resolution. 

 

 

4. CONCLUSIONS 

 

Soil depths of soils developed on carbonatic 

bedrock material were estimated with reliable 

accuracy by partial least squares regression 

from inorganic carbon concentrations. A 

multivariate regression based on both water 

index and inorganic carbon enhanced soil 

depths prediction accuracy substantially. This 

methodology has been successfully applied to 

an agricultural plot. Results confirm that the 

approach is predicting very similar depths to 

those observed in the field descriptions. The 

use of this combined approach will facilitate 

the implementation of digital soil mapping. 

Nevertheless, the approach presented here 

suffers from some limitations, e.g., intensities 

of weathering and leaching of carbonates are 

controlled by the local climatic conditions, 

management practices like deep ploughing 

weaken the correlation of Cinorg with soil 

depth, and plant growth can substantially be 

modified by fertilizer application. In either 

case, local calibration seems to be mandatory. 

In this study, a mixture of non-imaging and 

imaging spectroradiometer data was used to 

derive both variables for the prediction of soil 

depth. For an operational use, the acquisition 

of two hyperspectral datasets, one covering 

vegetation status and another one covering the 

status of bare soils, is advised. 

 

 

Figure 3. Soil depth estimates at plot level. 

Soil depth 

[cm] 

min max mean std.-

dev. 

Field 19.0 92.0 59.9 20.2 

“Image” 29.8 97.2 63.8 11.7 

Table 1. Descriptive statistics of soil depths 

field-estimated and predicted “image”-based 
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